Projektleder: Jens Kjerulf Pedersen
Projekttitel: Production of Mussels - Mitigation and Feed for Husbandry
Den nuværende produktion af fødevarer eller non-food biologiske produkter har ofte miljømæssige konsekvenser og der er et behov for en mere bæredygtig biologisk produktion. Samtidig er behovet for at udnytte havets og vore kystnære farvandes ressourcer stigende. MUMIHUS har som formål at forene produktion af nye råvarer med tilvejebringelse af et virkemiddel til forbedring af vandkvaliteten i kystnære farvande. Midlet til at nå dette mål er at udvikle kompensationsopdræt af blåmuslinger, hvorved næringsstoffer tilført fra land til de marine miljøer land bringes tilbage til land. Her kan de genbruges, fx som foder i økologisk landbrug eller som råstof i muslingeindustrien. Specifikt vil MUMIHUS udvikle og tilpasse eksisterende produktionsteknologier for blåmuslinger til en omkostningseffektiv praksis rettet mod maksimal fjernelse af biomasse. Effekten af kompensationsopdræt af muslinger i miljøet vil blive undersøgt under anvendelse af både konkrete undersøgelser og økologisk modellering og de producerede muslingers indhold af miljøfremmede stoffer vil blive undersøgt. For at undersøge virkemidlets nationale potentiale vil vækst af muslinger blive undersøgt under forskellige omverdensforhold svarende til variationen i danske fjorde. Endelig vil virkemidlets rentabilitet blive beregnet og sammenlignet med andre virkemidler, ligesom der vil blive udviklet et system for omsættelige næringssaltkvoter til administration af virkemidlet.
Projektleder: Rasmus Larsen
Projekttitel: Centre for Imaging Food Quality
The ability to measure quality of food products is a key parameter for the food industries 1) in sorting of raw materials; 2) in maintaining a uniform high quality product with minimum waste; and 3) in developing and producing food products with required chemical, physical, sensory, or health related properties.
A new data driven design methodology that will result in a series of in-line and in process active illumination and computer vision based measurement systems is proposed. These non contact systems with zero contamination risk will capture and relate surface and sub-surface optical properties to food product quality. Primary cases are dairy and meat products.
New technological developments in 1) imaging sensors sensitive in the visual, near infrared and short wave infrared spectral ranges; 2) laser light emitting diodes and fiber laser illumination sources; and 3) multivariate data analysis, will be combined in order to construct new imaging spectrometers with an unprecedented freedom of spectral and geometrical configuration.
The use of directed laser light will enable capturing information from inside food materials relating to distributions of size, shape, orientation and density of light scatterers. This will in turn allow for estimation of such parameters as the “mouthfeel” of a chocolate mousse and the tenderness of a piece of meat. The fast, optical and non-contact approach will enable a series of inline quality and process control instruments for food production of uniform high quality products.
The project partners include two university departments – DTU Informatics and DTU Fotonik; three major food and ingredients industries Danisco, Danish Meat Research Institute and Arla Foods; and two technology providing companies– Videometer (SME) and NKT Photonics.
Projektleder: Søren Brunak
Projekttitel: Patient Stratification by combining healthcare sector and molecular systems biology data
The individual human genome projects, in which patient-specific DNA sequences are revealed, give new opportunities for computational analysis which combines molecular level information with clinical data from the healthcare sector. Molecular bioinformatics and systems biology, where properties of disease gene networks typically are revealed, have not been having a large overlap with the research communities working on the basis of information in patient records, public registries, and the epidemiological area. In this proposal we will – for selected areas of pathology – combine molecular level disease systems biology data, genotype and biochemical healthcare sector data from individuals, and perform text mining of electronic patient records, biobank questionnaires and registry information. The conventional way is to go from “genotype to phenotype”, but in this project we work from both directions mapping both types of data on network biology models of specific disease areas, with the aim of grouping patients both from human variation data and the associated extended description of clinical features in the medical records. The parties behind this research proposal have identified three complex disease areas (type 1 and type 2 diabetes, testicular dysgenesis syndrome, and mental illnesses), where electronic patient records and different types of genotype information are available for the same individuals. A related goal of wide importance for many other projects in Europe and elsewhere is to establish mappings and methodology which link disease ontologies, terminologies and nomenclatures formulated in English, with non-English language texts. The amount of non-English healthcare sector data in Europe is far larger than the English counterpart, and this situation will most likely remain the same in the foreseeable future, emphasising the international perspectives of the proposed research.
Projektleder: Joachim Scholdere
Projekttitel: Bridging the gap between health motivation and food choise behaviour: A cognitive approach (HealthCog)
The objective of the project is to identify ways in which nutrition and health-related information on product packages can be made more effective. In order to accomplish this, the project will assess the effects on consumer perception, attention, information processing, understanding, and choice behaviour of a wide variety of health cues and other information elements on product packages, and identify optimal combinations of them. Furthermore, the project will investigate the degree to which the effectiveness of health cues depends on product categories, other package design elements, and inter-individual differences between consumers. The project will utilise a number of methods developed in cognitive science, including objective methods of attention measurement (eye-tracking), reaction-time based methods of motive salience (priming and response competition paradigms), and unobtrusive methods of emotional response measurement (automatic recognition of facial expressions). These methods will be combined with conventional techniques such as choice modelling, longitudinal analysis of panel data, sensory profiling, and consumer acceptability testing. The results of the different work packages will be integrated by means of dynamic computational modelling. The combination of this particular set of method will make it possible to obtain objective assessments of consumer health motivation, and to predict the effect of changes in the design of product packages on the preferences of consumers, actual choice of products in the retail store, and product handling and usage in consumers’ households. All studies will be conducted with dairy foods as example cases.
Projektleder: Naomi Geshi
Projekttitel: Production and design of structural and health-promoting food ingridients: plant arabinogalactan proteins
Glycosylation plays a key role in the formation and functionality of a variety of important bio-active molecules. The aim of the proposed project is to establish microbial cell factories for sustainable production of defined glycosylated bio-molecules, whether small such as vanillin or large such as arabinogalactan proteins (AGPs). Vanillin is the most important aroma compound based on market value. Natural vanillin (US$ 1200-4000/kg) is obtained from the vanilla orchid but amounts to only 0.3% of total vanillin use, the remaining part being obtained by chemical synthesis. The best known AGP is gum Arabic, used in the food industry for its unique properties as emulgator and its health promoting effects. As it is obtained from wild plants, supply is unstable and quality inconsistent. We already managed to express the entire biosynthetic pathway for vanillin in yeast, and have state-of-the-art knowledge in gum Arabic biosynthesis, and most importantly we possess a unique glycosylation platform encompassing more than 700 membrane bound and 100 soluble glycosyltransferases. These will be employed, 1) to identify the entire pathway for functionally optimal AGP variants, and, 2) to identify an optimal vanillin glycosyltransferase that turns vanillin into vanillin glucoside, ensuring vanillin detoxification and solubilisation during biosynthesis. The partner’s “cutting-edge” knowledge in combinatorial biochemistry, synthetic and systems biology and molecular modelling allows for discovery and implementation of the genetic solutions needed for a commercially viable and environmentally benign production of these valuable compounds. Overall, the research initiative will supply academia, Danish industry and the Danish society at large with the technologies and ideas needed to advance the transition from a petrochemical to a bio-based society.
Projektleder: Niels Frimodt-Møller
Projekttitel: Danish center for antibiotic Research and development DANCARD
Antibiotic resistance is increasing with dramatic speed worldwide, and pan-resistant E. coli, i.e strains resistant towards all known antibiotics, are being reported even from Europe. Already, 20 years ago the major pharmaceutical industries started to lay-down their antibacterial research and development, since it was not profitable. So presently, we are being outrun by antibiotic resistance development with very few new drugs in our armamentarium.
The present project proposes to attack this problem from several angles: 1) to conserve the present active antibiotics by designing drugs to circumvent resistance mechanisms, and to protect the normal flora, mainly in the gut, against the selective pressure of antibiotics, 2) to develop new antibiotics, with focus on antimicrobial peptides and peptidomimetics, 3) to enhance the activity of present antibiotics by using nanotechnology (e.g. liposomes) aiming to targeted delivery; 4) to reduce serum protein binding of highly bound drugs by understanding the process and modify the molecules accordingly, and 5) to investigate and screen for antibiotic activity in vitro and in vivo, and to use mathematical modelling to develop the science of pharmacokinetics/pharmaco-dynamics, in order to enhance the effect of drugs in the individual patient.
Overall our centre will focus on development of new antibacterials, specifically to prevent major common diseases (such as urinary tract infections, chronic wounds etc) and design drugs and dosing methods to accommodate the needs of the individual patient.
Projektleder: Jan Johannes Enghild
Projekttitel: Novel enzymes of industrial relevance: specialised proteolytic enzymes for release of new bioactive peptides (NOVENIA).
Peptides are released from larger proteins by the activity of proteolytic enzymes. Some of the peptides released from food proteins, e.g. proteins from milk or fish, have a positive effect on several aspects of human health, such as regulation of blood pressure or mediation of resistance to pathogenic bacteria. However, enzymes traditionally used for industrial applications to release bioactive peptides commonly have optimal activities at conditions that pose hygienic or organoleptic problems due to oxidation of fatty acids or growth of pathogenic or food-spoiling bacteria. A variety of natural environments, however, are expected to harbour a large but hitherto untapped resource of peptide-releasing enzymes with desired properties. In this project, we will implement an innovative integrated approach to isolate, characterise and develop novel proteolytic enzymes. We will analyze 1) unexplored environments rich in proteolytic enzymes (digestive fluid from snake, spider, and carnivore plants) and 2) microbiological environments where proteolytic enzymes are adapted to environmental conditions of interest to the food and biotech industry (high pH, high pressure, and low temperature). We will employ complementing strategies including functional screening, proteomics, and metagenomics. Proteolytic enzyme-coding genes will be cloned as full-length sequences, modified according to codon-bias of industrial strains, and produced. The properties of these enzymes will be studied in detail for substrate preferences, optimal pH and temperature conditions and inhibitor profiles. We will also test the ability of these enzymes to produce bioactive peptides from milk and fish proteins with focus on hypotensitive, antioxidant, antimicrobial, and immune-modulating bioactivities.
Projektleder: Lene Jespersen
Projekttitel: New Strategies for estimation of virulence potential of foodborne pathogenes by quantitative gene analyses (GeneQuant)
GeneQuant is based on the hypothesis that the virulence potential of pathogenic bacteria, besides varying between and within serotypes, is influenced by the environmental conditions experienced during food processing and in food matrices. Conventional methods used to detect foodborne pathogens in contaminated food products are laborious, non-specific and do not take into consideration the virulence potential of the pathogenic bacteria. GeneQuant therefore intend to develop new culture independent technologies for quantification and characterization of the virulence potential of foodborne pathogens which are based on the transcription of important virulence factors. This will lead to a better risk assessment and additionally allow the food industry to determine the environmental factors during food processing that significantly enhance the virulence potential of pathogenic bacteria. In GeneQuant, it will also be investigated how transcription of virulence genes and the corresponding proteins are influenced by the passage of the human gastro-intestinal (GI) tract by use of an in vitro digestion model followed by the exposure to functional mammalian cell cultures mimicking the GI-tract and virulence models based on infection of nematodes (C. elegans) and larvae (M. Galleria). Predictive mathematical models based on quantitative gene transcription will be developed to enable prediction of growth and virulence of pathogenic bacteria in food matrices. The models will be validated by use of commercially available virulence specific microarrays intended for the food industry. The technologies developed and the information gained will be useful for risk assessment in the entire food chain and will be of value to the food industry and the consumers in general. However, due to a substantial co-financing from the Danish Dairy Research Foundation, major focus will be given to the dairy industry.
Projektleder: Frank Møller Aarestrup
Projekttitel: Center for genetic epidemiology
Within five years the costs for a total bacterial genome sequencing will be less than 5 000 DKK and the equipment needed will cost less than 500 000 DKK. Thus, in 5 to 10 years most clinical and industrial microbiological laboratories will have a sequencer in use on a daily basis. As prices decline to less than 1000 DKK whole genome sequencing will also find worldwide application in human and veterinary practices, in the biotech industry, as well as many other places where bacteria are handled. In Denmark alone this equals more than 100,000 isolates annually in 15-20 laboratories and globally up to half a billion isolates per year. Thus, in the future, the limiting factor will not be the cost of the sequencing, but how to assemble, process and handle the large amount of data in a
standardized way that will make the information useful for diagnosis, outbreak investigation, source tracking and surveillance. The biotechnology industry and environmental microbiology will have a
similar need. The proposed center will provide the bioinformatic and scientific foundation for future web-based solutions where a central database will provide simplified whole genome sequence
information and enable rapid whole genome comparisons to all other sequences including spatialtemporal analysis. Thus, we will develop algorithms for rapid whole genome sequence analyses,
tools for extraction of biologically and epidemiologically relevant information from the sequence data, and web-based interfaces to enable use of the system by the global scientific, public health and
medical communities. The activity can be expanded to also include other microorganisms, such as viruses and parasites. To build up such a service and have it accepted by the medical and scientific
community it must be a well-organized and stably funded project; therefore, we are applying for 6 years of funding in order to develop a strategic research centre. Following this period, we expect
that these functions will be imbedded in the basic activities of the project partners.
Projektleder: Thorkild I. A. Sørensen
Projekttitel: Gene-diet interactions in obesity and related chronic inflammation
Fedme og dens følgesygdomme er blevet en svøbe i stort set alle samfund kloden rundt. Hverken behandling eller forebyggelse kan klares alene ved at spise noget mindre og røre sig noget mere. En nylig grundig gennemgang af den samlede videnskabelige litteratur om betydningen af kosten og fysisk aktivitet for fedme gav det nedslående resultat, at der ikke er evidens for en sådan sammenhæng. Selvom påtvungen ændring af kaloriebalancen selvfølgelig fører til ændringer i fedtdepoterne, må reguleringen af energibalancen, udvikling af fedtvævet og lagring af fedt også tages i betragtning. At forskelle i fedme delvist skyldes forskelle i gener er for længst slået fast, og mange nye gener er fundet de seneste år, som dog kun forklarer ganske lidt af arveligheden. At det nære miljø livet igennem spiller med er lige så velfunderet. Dette projekt bygger på formodningen om at kombinationer af bestemte udgaver af generne og en bestemt kost spiller en afgørende rolle for udvikling af fedmen og behandling af den med vedvarende effekt. Dybdegående analyser af allerede foreliggende og løbende tilførte data fra undersøgelse af flere store befolkningsgrupper med information om kost, gener og fedme. Nye teknikker til undersøgelse af de individuelle forskelle i hele arvemassen og samspillet med række bestemte komponenter i kosten vil blive anvendt. Resultaterne af denne forskning vil kunne bidrage til udpegning og udvikling af sundere fødevarer, ikke kun for genetisk disponerede, men for alle.
Projektleder: Kassem, Moustapha
Projekttitel: Efficient Homing" into injured tissues: Systemic Celle based Therapy Mesenchymal Stem Cells (MSC)"
Mesenchymal stem cells (MSCs) have demonstrated a significant potential for clinical use and a number of clinical trials are currently performed both in EU and United States. But in order to take advantage of -and improve the therapeutic efficacy of MSCs, an in depth understanding of how MSCs can be targeted to a specific tissue or organ to secure long term engraftment is important for obtaining optimal treatments based on MSCs.
In this interdisciplinary project a variety of different scientific fields are combined aiming at obtaining a better understanding of fundamental mechanisms of the homing- and engraftment process of MSCs, including identification of factors that are able to control this process. We expect that these results will lead to new therapies based on MSCs, either by controlling the engraftment and localization of systemically infused MSCs or by stimulating migration and homing of endogenous MSCs.
We aim to bring together a consortium with key biological and methodological strengths in order to specifically address the poorly understood mechanisms underlying the mobilization and migration of MSCs to sites of injury, exploiting two well-established animal models of injury relevant to prevalent pathologies; namely bone fracture healing and stroke.
Projektleder: Bente Maegaard
Projekttitel: Experience-oriented Sharing of Health Knowledge via Information and Communication Technology (ESICT)
This project aims at providing citizens with an innovative information system on health and disease based on information technology, language technology and formalized medical knowledge. The ESICT system allows users to ask questions in natural language which will be answered the same way. Such a system addresses demands expected to become increasingly important; citizens must be able to take more responsibility for their own health, e.g. by navigating available information and acting in accordance with disease related information provided. Furthermore, an easy access to health and disease information will improve communication between health professionals and patients, facilitate self-care and consequently improve patient safety.
The project is highly cross-disciplinary by using and creating methodologies related to three broad subject-areas: information technology, humanities and health science. The basic idea is ambitious: to employ relations, descriptions and concepts from the SNOMED CT (Systematized Nomenclature of Medicine-Clinical Terms) ontology and extract knowledge from other medical data sources in order to generate answers for the questions formulated by the citizens. The project is characterized by a strong user orientation, a natural language component and an IT component. Focusing on two widespread diseases as pilot applications, the project will demonstrate feasibility and costs of a large-scale application including other medical fields of SNOMED CT. Further, our approach naturally extends to other languages and even to completely different domains.
The project has an obvious societal, welfare and growth potential.
Projektleder: Sjurdur Frodi Olsen
Projekttitel: Centre for Fetal Programming
Føtal programmering er et koncept, der forbinder miljøfaktorer i fosterlivet med risiko for sygdom senere i livet. Epidemiologiske og eksperimentelle undersøgelser har påvist, at den gravides ernæring i form af makronæringsstoffer, mikronæringsstoffer og giftstoffer påvirker dannelse og funktion af fostrets organer. Selv om føtal programmering nu er anerkendt af mange, har man stadig ikke klarlagt de molekylære mekanismer, der ligger til grund herfor. Målet med Center for Føtal Programmering er at fastslå, hvordan faktorer i fostertilstanden påvirker udviklingen af fostrets organer og deres funktioner, og hvordan dette kan forbindes med udvikling af mange udbredte sygdomme som fx fedme, type 2 diabetes, allergi, mentale sygdomme og knoglesygdomme. Målet er også at undersøge om uheldig føtal programmering kan forebygges ved ændringer af kosten før og under graviditeten, samt om det er muligt at afbøde effekten af en uheldig føtal programmering gennem barnets ernæring. Centret vil integrere epidemiologisk, human klinisk og dyreeksperimentel forskning og derigennem skabe det nødvendige vi-dengrundlag for kost- og levevilkårsanbefalinger, der kan fremme sundheden for fremtidige generationer. Et centralt fundament for centerdannelsen er adgangen til adskillige, på verdensplan unikke studiematerialer, der dækker perioden fra foster- til voksenliv, af store, homogene og særdeles velkarakteriserede befolkningsgrupper med tilgængelige biomaterialer.
Projektleder: Ulla Kidmose
Projekttitel: Maximising the taste and health value of plant food products - impact on vegetable consumption, consumer preferences and human health factors (MAXVEG)
I mange danske grønsager findes en lang række phytokemikalier, som sandsynligvis mindsker risikofaktorerne for type 2 diabetes (T2DM) og hjerte-kar sygdomme. Men samtidig giver disse stoffer grønsager en bitter og stærk smag - et dilemma, da mange forbrugere i dag foretrækker søde og mildtsmagende grønsager frem for fortidens bitre og stærktsmagende (BSS) grønsager.
orbrugernes præference for BSS grønsager afhænger sandsynligvis af deres følsomhed overfor bitre stoffer. Målet med projektet er at udvikle nye værktøjer og strategier til at øge forbrugernes præference og forbrug af BSS rodfrugter og kåltyper med maksimal indhold af de sunde phytokemikalier. Dette søges løst ved at undersøge – sammenhæng mellem forbrugernes præference, diversitet i smag og indhold af phytokemikalier, – sammenhæng mellem forbrugernes sensitivitet over for bittersmag og præference, - sundhedspotentialet i grønsager og kål med varierende indhold af phytokemikalier med fokus på T2DM patienter,- hvordan bittersmag kan maskeres og modificeres ved at ændre på dyrknings- og opbevaringsstrategier. Nutidige forbrugermønstre forklares ud fra historisk-kulturelle mønstre og anvendes til at evaluere brandings- og markedspotentialet af disse grønsager som led i ”New Scandinavian cooking”.
Samlet set vil denne viden strategisk blive anvendt til at øge præferencen for og indtaget af BBS rodfrugter og kåltyper med øget sundhedspotentiale.
Projektleder: Jeffrey Hoorfar
Projekttitel: Campylobacter vaccination of poultry.
Background: Most human cases of Campylobacter infections are associated with consumption of poultry products. Vaccination of poultry preventing early colonization of Campylobacter could be one of the intervention strategies. There are three challenges in developing this vaccine: (1) the identification of novel cross-protection-inducing antigens, (2) the induction of a rapid, potent immune response, and (3) the development of novel adjuvants to further stimulate immunity against Campylobacter. The rapidly emerging knowledge of the biology of Campylobacter in combination with advances in the fields of molecular vaccinology and immunology provide the setting for the development of a vaccine. No commercial Campylobacter vaccine is currently available.
Vision: Cost-effective production of low-risk chickens.
Aim: To develop a cost-effective vaccination strategy, based on three current candidate vaccines and delivery systems.
Work plan: First year research will focus on the optimization and production of vaccine material, adjuvant preparations and laboratory protocols; the second year on experimental evaluation of the vaccines; and the final year on field trials to assess the protective properties of candidate vaccines against colonization of Campylobacter in breeder and broiler chickens. One work package (WP) is devoted to each vaccine candidate, and a fourth WP deals with economics, statistics, risk assessment and bioethics. The partners are DTU, Dianova Ltd., ACE BioSciences Ltd. and two international vaccine groups from Utrecht Univ. and Univ. Arizona. Brazil and Indonesia are included for the field studies.
Outcome: The outcome will to contribute to food safety, and provide the Danish food and biotech industries with a competitive edge. The participation of Brazil and Indonesia provide access to other types of poultry productions and can create international markets for the vaccine products. The outcome will be communicated to the Danish regulators and the European Food Safety Agency.
Projektleder: Jørn Dalgaard Mikkelsen
Projekttitel: Enzymatic production of human milk oligosaccharides
The ultimate goal of the proposed project is to produce human milk oligosaccharides (HMO) by enzymatic catalysis from their basic, natural building blocks harvested from different food industry side streams. The concept will be explored by enzymatic upgrading of for example lactose from dairy processes and chitin from shell fish. The main challenge for such a biocatalytic approach is the access to suitable enzymes. In this project the required enzymes will be isolated via diversity screening and genome sequencing and developed via designed genetic constructs. The HMO has received considerable attention due to the health benefits they confer on infants by promotion of healthy bacteria in the gut and protection against infections. The evaluation of the possible health benefits and mechanisms that the HMO exert will also be examined as part of the research effort. The market for current prebiotics, fructo- and galactooligosaccharides and glucose-based products is very high and is expected to grow to an estimated value at the ingredient level of 3 billion DKK by 2011. Since HMO appear to have unique biofunctional properties especially for infants the design of new production routes for HMO may provide a new type of high value functional food ingredients.
Projektleder: Søren Brøgger Christensen
Projekttitel: A new sustainable Platform for production of valuable Natural Products as Illustrated by production of Thapsigargin in Moss
Flere kommercielt interessante plantestoffer har en så kompliceret opbygning, at disse ikke på en økonomisk rentabel måde kan fremstilles ved kemisk syntese. På det seneste har det vist sig muligt, at overføre biosyntesevejen af sådanne plantestoffer fra den oprindelige plante til en mere fordelagtig produktionsorganisme. Mos er særlig anvendelig til produktion af plantestoffer, idet den kan dyrkes kontrolleret i store tanke, ligesom gær og bakterier, men samtidig har den primære og dele af den sekundære biokemi tilfælles med alle andre planter.
Plantestoffet thapsigargin vil blive benyttet som målmolekyle for udvikling af mos som produktionsplatform for naturstoffer. Thapsigargin har gennem et dansk-amerikansk samarbejde vist sig at have et potentiale som kommende lægemiddel mod prostatakræft. GenSpera Inc. forventer at indlede kliniske studier i 2009, og et positivt udfald af disse forsøg vil medføre en forøgelse i efterspørgslen. I øjeblikket isoleres thapsigargin fra planten Thapsia garganica, der ikke kan dyrkes og har en begrænset udbredelse. Med dette projekt vil vi imødekomme det fremtidige markedsbehov for thapsigargin ved at etablere en bæredygtig produktion i mos. En etablering af en ny og lovende platform for produktion af naturstoffer vil ligeledes have et stort økonomisk potentiale. GenSpera har erklæret sig interesseret i at overtage de intellektuelle rettigheder til den udviklede teknologi og tilbyder en betydelig medfinansiering.
Projektleder: John Mundy
Projekttitel: Natural resistance in GMOs
Plantesygdomme forårsaget af mikrober er hvert år skyld i, at en stor del af verdens afgrøder går tabt. Landmænd bekæmper disse sygdomme med kemisk pesticider, og planteforædlere prøver at komme sygdommene i forkøbet vha. afgrøder med forbedrede resistensegenskaber. Forædlingsprogrammer er tidskrævende, og pesticider er uhensigtsmæssige. Man har lært meget om resistens i planter fra modelorganismer, såsom gåsemad, og fundet resistens (R) gener med en betydelig rolle i planters forsvar. Mikrobielle genprodukter genkendes direkt eller indirekt af R gener. Man kan ”indsætte” R gener fra én planteart i en anden uden sideeffekter fordi R gener tænder for et naturligt forsvar, når en mikrobe genkendes. R gener er derfor attraktive kandidater til GMO afgrøder, men man hidtil ikke har haft de fornødne værktøjer til at finde ud af, hvilke mikrober de enkelte R gener kan bekæmpe. Vi har udviklet en metode til dette i gåsemad, og vi vil bruge den til at matche samtlige R gener (over 100) i gåsemad med mikrober. Derudover vil vi udvikle og bevise metoden i hvede bla. med høj through-put sekventering af hvede R gener. Dette er principielt, hvad man gør med forædling, men vores metode vil give mulighed for, på sigt, hurtigt at flytte R gener uden følgeskab af uønskede gener og forøge udbyttet globalt med et renere miljø til følge.